.

Computer Graphics
Foundation to Understand
Game Engine
CS631/831 %

S~——__

Quick Recap

» Computer Graphics is using a
computer to generate an image from
a representation.

computer

Mode| =———p Image

4@‘

\

Modeling

* What we have been studying so far is
the mathematics behind the creation
and manipulation of the 3D
representation of the object.

computer
Model J—P Image

4@‘

\

Modeling: The Scene
Graph

+ The scene graph captures transformations
and object-object relationships in a DAG

» Objects in black; blue arrows indicate
instancing and each have a matrix

Modeling: The Scene
Graph

* Traverse the scene graph in depth-first
order, concatenating transformations

* Maintain a matrix stack of
transformations

—

Visited —

—l —
Unvisited

Matrix
@ S“'ﬂCk

Motivation for Scene
Graph
- Three-fold

- Performance
- Generality
- Ease of use
» How to model a scene ?

- Java3D, Open Inventor, Open
Performer, VRML, etc.

4@‘

\

Scene Graph Example

Scene Graph Example

Scene Graph Example

Scene Graph Example

~

|

Scene Description

+ Set of Primitives

+ Specify for each primitive
* Transformation
- Lighting attributes

- Surface attributes
- Material (BRDF)
- Texture

= Texture transformation

=L

\
\

Scene Graphs

- Scene Elements

- Interior Nodes
* Have children that inherit state
* transform, lights, fog, color, ...
- Leaf nodes
* Terminal
* geomeftry, Text

- Attributes

Additional sharable state (textures)

Scene Element Class
Hierarchy

Scene Graph Traversal

Simulation
- Animation

Intersection L
- Collision detecti
- Picking

Image Generatic

- Culling H]
- Detail elision LOD

e e e e e e
o T,

- Attributes e @
_.

Culled Primitives

Functional Organization

» Articulated Transformations
- Animation
- Difficult to optimize animated objects

Bounding Volume
Hierarchies

View Frustum Culling

%i

I
Pl
gl

R

4
|
ooy

g

}
SR

;

i
AT, |
Pty
e
Faoton
paas
s
.,
o
PR
e

"

———————d

Level Of Detail (LOD)

- Each LOD nodes (_top >
have distance (Light)
ranges

o) ooy A
|
< 9o =

What is a
Transformation?

* Maps points (x, y) in one coordinate
system to points (x’, y') in another
coordinate system

X'=ax+by+c
y'=dx+ey+f

4@‘

\

19

Transformations

+ Simple transformation
- Translation
- Rotation
- Scaling

s
o ax

Identity Translation

Isotropic
(Uniform)
Scaling

20

Transformations

* Why use transformations?
- Position objects in a scene (modeling)
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Animations

4@‘

\

21

How are Transforms

Represented?
X'=ax+by+c
y'=dx+ey+f

D||X C
e [|y| |f

' a
y') d

p° = Mp + 1

22

Combining Translation &
Rotation

T(L1) { L. R(45°) {

N N
R(45°) L. T(12)
| N

M

4@‘

23

Combining Translation &

Rotation
Vi=v+T V'=Rv
V'=RV
vV'=R(V+T) V'=Vv+T
V'=RV+RT V'=RvV+T

24

Homogeneous Coordinates

* Add an extra dimension
* in 2D, we use 3 x 3 matrices
- In 3D, we use 4 x 4 matrices

» Each point has an extra value, w

x| [a b ¢ d|[x
y'|_|je Tt g hjly
7' 1] k | Z
W' ‘mn o pj|w
p* = VP

25

Homogeneous Coordinates

+ Most of the time w = 1, and we can

ighore i N
X' a b c d X
y|_|e Tt g hilly
70 ok 1|z
\1/ \O 0 O 1/ \1/

26

4@‘

\

Combining
Transformations
= Sv
' =RvV'=RSv
" =Tv"'=TRv'=TRSvV
" =My

< < < <

where M =TRS

4@‘

\

27

Deformations

Transformations that do not preserve
shape
= Non-uniform scaling
= Shearing
= Tapering
= Twisting
= Bending
Sy

\

28

Tapering

o o O -

0
f ()
0
0

0
0

f (x)
0

R O O O
N < X

Qriginal objects

Tapering

29

Twisting

X [cos(@(y)) O sin(@(y)) Ofx
y'| 0 1 0 0y
2’| | -sin(d(y)) 0 cos(d(y)) 0] z
RO 0 0 1j1

QOriginal objects

Twisting

30

31

Original objects
Bending

£ i

s S A,

7 A
Iy i iy

R SLS NS S
—'o”rf....t//flflllll.rﬂ”ﬂ”ﬂﬂt
A AR A L o
o 69/4/1;7//1////5’!.””#0?(!!’!/...
4/4!1/!1&..;1?#”‘ S

NS

Lo
SN L
i

Graphics Pipeline

(=

Modeling
Transtformations

[Tlumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

32

Graphics Pipeline

+ Almost every step in the graphics
pipeline involves a change of
coordinate system. Transformations
are central to understanding 3D
computer graphics.

33

4@‘

\

R

Gr'aphics Pipeline [llumination

(Shading)

* Modeling transforms orient

Viewing Transformation

the models within a (Perspective / Orthographic)
common coordinate frame
Clipping
(world space)
| Projection

A : /—Zx (to Screen Space)
E — 7 Scan Conversion
- .J((Rasterization)

Object space World space Visibility / Display

“ l
Q\Q\ y

(&

Modeling
Transtformations

Graphics Pipeline _h

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

35

AR

Modeling
Transtformations

Gr'ap h iCS P i pel ine Illumin.atinn
(Shading)

« Maps world space to eye space

* Viewing position is transformed _
to origin & direction is oriented
along some axis (usually z)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

36

Graphics Pipeline

Transform to Normalized Device
Coordinates (NDC)

Portions of the object outside the
view volume (view frustum) are
removed

(&

Modeling
Transformations

[llumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

37

N —

Q&

Graphics o

Transformations
P i pel ine Ilumination
(Shading)
- The o bj@CTS are Viewing Transformation
p r O,j ect ed o T h e (Perspective / Orthographic)

2D image place
(screen space)

(l) width

top—_ 10
[T A Ul NN o S U L T S VR R
‘ | Pt T - Y“ L |

Clipping

| R T .
e A Scan Conversion
bottom j// T | | 11 (REEtEI'lEﬂHDH)

4 I

i e < = (4 L heighit

/t“ﬂ' eye space near sScreen space

‘ right L.)

Visibility / Display

38

N

39

+
+

+ || +F=|]+ || F|]+ ||]+
 IEIEIEIEIE BE; 3K
+ || +|]+ +] + + | &
|| = =]+ 4 * | *
+ | +|+| + + + |+

* | + -+

+ *

+|*| || F]F+]| T

|+ |+ F

Graphics Pipeline

¥|+r| x| F+[F]|TF|T+|F| ||| F|F|T]|T]|T]T]|T
|+||*+|F+|)|+ |F|+|F+|F]|F|F| ||]|
|+ | +|F]|)| F|F| ||| |||

|+ ||+ |+ F]+]|+
| F| |||
*|l+|F|F+|F|*F] T+
|l+|F|F|F+]|
+l+|F)+]|+

LN N N NN
|+|)| +
|l+||+]|+

| F)|+]|+
|| *| +

Graphics
Pipeline

+ Z-buffer - Each
pixel remembers
the closest object

(depth buffer)

(&

Modeling
Transformations

Iumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion

(Rasterization)

Coordinate Systems

= Object coordinates

= World coordinates

= Camera coordinates

* Normalized device coordinates
= Window coordinates

4@‘

\

41

Object Coordinates

Convenient place to model the object

A

4@‘

42

World Coordinates

Common coordinates

for the scene 4
4 N O >
—
O > W >
M, =TSR

Positioning Synthetic Camer

up
L= eyeat
[E'_:. E:.._. Ez:l
Z 4
irimge
ane
y ’ ’
1 v ‘
U
up
o X

as viewed from eye

What are our “"degrees of freedom" in camera

positioning?

To achieve effective visual simulation, we want:

1) the eye point to be in proximity of modeled scene

2) the view to be directed toward region of interest,

and

3) the image plane to have a reasonable "twist” 44

Eye Coordinates

up v
A | . eyeat
NN {E:-;: Eys Ez]
~ N image
lane
}f! /-//ﬁ \ P
/! .)
| A
/ Vo
/ Y,
i..-' | uip u
0 ~ | |

as viewed from eye

Eyepoint at origin

u axis toward "right” of image plane
v axis foward "top” of image plane
view direction along negative n axis

45

Transformation to Eye
Coordinates

W

r""---_._—---‘h..
M u
Bye
z el
" near clip
.|'II||iI plane
y | \
-

o X far clip

plane

Our task: construct the transformation M
that re-expresses world coordinates in the
viewer frame

46

Where are we?

We've re-expressed world geometry in eye's frame of reference:

[right = fin, top = fin, —far]
L. /

L

- z

(1.1, 1)

iright, fop, —near)

projection plane
Z=-near

(left, bottom, —near)

(—1.-1.-1)
right-handed; view is along -z axis lefi-handed; z increases into display

Next we must transform to NDC { Normalized Device Coordinates)
to prepare for (simple) clipping and projection

For that, we need the Perspective Transformation
We'll study Perspective Projection first, then generalize

47

What is Projection?

-
- b T

projector

ﬁ projection plane

——
-

e ———————

T e op

Any operation that reduces dimension (e.g., 3D to 2D)

Orthographic Projection
Perspective Projection

48

Orthographic Projectio

e focal point at infinity
e rays are parallel and orthogonal to the image plane

Image /.W

Comparison

Perspective Projection

XA

. _» (xy,2)

I.\I

,,.f'*"'ﬂ-"?r{x pY p:zp]

i
z='d Z

What are coordinates of projected point xp, yp, 2p!
By similar triangles,

m_ T WY
d =z d =z
Multiplying through by d vields
d-r =z d-y vy
T T /d TS /d p=d

z= 0 not allowed (what happens to points on plane z= 0?) 51
Operation well-defined for all other points

Similar Triangles
A [v, 2]

[(d/2)Y, d]

[0, 0] [0, d]

e Similar situation with x-coordinate

e Similar Triangles:
point [X,Y,z] projects to [(d/z)x, (d/z)y, d]

52

Projection Matrix

Projection using homogeneous coordinates:
— transform [X, vy, z] to [(d/z)x, (d/z)y, d]

d 0 0 0]x]

0 d 0 0y {d d }
=\|dx dy d =| = — d

0 0 d ol [Tl A dzzl=[7x y

0 0 1 O0l1 Divide by 4th coordinate

(the “w” coordinate)

e 2-D image point:
e discard third coordinate

e apply viewport transformation to obtain
physical pixel coordinates

53

Shading

[Drawing] Shading is a process used in drawing for
depicting levels of darkness on paper by applying media
more densely or with a darker shade for darker areas, and
less densely or with a lighter shade for lighter areas.

[Computer graphics] Shading refers to the process of
altering a color based on its angle to lights and its distance
‘ s : qalistic effect. Shading is

http://en.wikipedia.org/wiki/Photorealistic
http://en.wikipedia.org/wiki/Rendering

Shading

Light comes from many sources:
light = emitted + reflected

+transmitted
— scattered — absorbed

reflection
scattering

absorption

emission

55

Local versus Global
Tllumination

= Local lllumination = Global
« Only considers direct Illumination

IHHlumination = Considers
= No reflection indirect
= No refraction illumina'ﬁon
= Shadows possible " Reflection
= Refraction

= Shadows

56

f‘@‘

\

Local versus Global

Tllumination
/

\ |
/C| \

Direct lllumination

Indirect lllumination

57

We will do local only for this lecture...

Local illumination

* Only consider the light, the observer position,
and the object material properties

light O N

—~

4@‘

58

Local versus Global
IIIminaTion

B

review some basic notions of physics... 59

Phong Reflection

Assume point lights and direct illumination o

| =1 + g ot |

ambient Iffuse specular

M

4@‘

\

60

Phong Diffuse Component

Diffuse component depends only on incident
L itruse = 1) Ky COSE
=1, K4 (N-L)

Specular Light

= These are the bright spots on objects (such as
polished metal, apple ...)

= Light reflected from the surface unequally to all
directions.

= The result of near total reflection of the incident
light in a concentrated region around the specular
reflection angle

light O N
L R

62

Phong Reflection

0.88/1.80 0.25/0.75 8.58/0. 5@ 0.75/8.25

Image courtesy of Watt, 3D Computer Graphics

1.60/0.00

63

Aluminium

64

Bronze

Vertex Normals vs. Fac
Normals

What are the normals to the surface?

Each polygonal face has a normal.

C N=(b-a)x(c-hb)

b
We call these face normals.

f‘@‘

\

67

Flat Shading

Assume a constant color across the polygon

C

Uses face normals
Equivalent to single point sampling...

n mesh is only an approximation.
n we do better? .

Vertex Normals vs. Fac
Normals

Should use the actual surface’s normals

_—/

/N

y stored at the vertices of the object
n calculate as averages of face normals

Mach Band ?

70

Mach Band ?

71

Flat Shading

73

Gouraud Interpolation — Interpolated Shading

Phong Interpolation — Per pixel Shading

75

Gouraud Phong

Image courtesy of Watt & Watt, Advanced Animation and Rendering Techniques

In‘rerpol’rion

The Quest for Visual Realism

Model + Shadi hq

+ Textures

do things start
looking real?

R

Photo-textures

The concept is very simple!
e, for each triangle in the model
B IESSW estaplish 3 corresponding region
Dl Wiy,
oy 2oy \/" the phototexture

o N
o 2

During rasterization interpolite the
coordinate indices into the texture map

Slide Courtesy of Leonard McMillan & Jovan Popowic; M

Case Studies:
Low Poly Modeling

» With low polygon modeling, much of
the detail is painted into the texture

A .i‘=g . 'i
(ﬁ w : N

£ ‘)
SR

T QA
AA

Images courtesy of WildTangent, model and texture by David
Johnson.

80

Texture Mapping

Coordinates
Understanding U’s and V's

Managing the texture space
Laying out and positioning of UV points

< * poor contmulty confusmo * easier to undersand and paint
* too many shapes and seams * fewer seams

a. b.

N

Breaking Down
Mesh Object for Mappin

- Evaluate the 3D model for common areas

y o texture 2
borders — %%
W ~N SN\ 3

470 N\
hair bang —
sole
shoe— 7 ..
shirt —71 T ;P"‘“““'!E;i
1i 1mmﬂ“h,1
snouder Il Yot (VNN

N i e TV

0
single texture image texture space

» Avoid duplication
- Simplifies the work
Saving valuable texture space
- Reduce the amount of texture borders

skin group:
palm

arm and elbow
neck and face
back of hand

— entire pant leg

82

Applications beyond Texture M
Normal map: 3D Sculpting

* A low resolution model can be sculpted into
a very detailed mesh.

» This can be used in game via normal maps

Images courtesy of
Pixolgic. 83

Applications beyond Texture Map
Environment Maps

Use texture to represent reflected
color

+ Texture indexed by reflection vector

» Approximation works when objects are far
away f -t

84

Environment Maps
Using a spherical environment map

85

Environment Maps
Using a cubical environment map

m Easy to produce with rendering system
m Possible to produce from photographs

B “Uniform” resolution

m Simple texture coordinates cakulation

86

Environment Mapping

» Environment mapping

produces reflections on Environment
shiny objects

+ Texture is transferred in / /
the direction of the Viewer /
reflected ray from the Reflected ra
environment map onto the
object

+ Reflected ray: R=2(N- VYN-
Vv

Object
* What is in the map? .

87

Approximations Made

» The map should contain a view of the world
with the point of interest on the object as
the eye

- We can't store a separate map for each point, so
one map is used with the eye at the center of the
object

- Introduces distortions in the reflection, but the
eye doesn't notice

- Distortions are minimized for a small object in a
large room

» The object will not reflect itself

» The mapping can be computed at each pixel,
or only at the vertices

88

Example

Illumination Maps

Use texture to represent
illumination footprint

reflectance irradiance radiosity
§ 90

Bump Mapping
Use texture to perturb normals
- creates a bump-like effect

original surface bump map modified surface

O(u,Vv) B(u,v) O'(u,v)

=1 .
~@ Does not change silhouette edges

\

91

\

Bump Mapping

* Many textures are the result of small
perturbations in the surface
geometry

* Modeling these changes would result
in an explosion in the number of
geometric primitives.

* Bump mapping attempts to alter the
lighting across a polygon to provide
B2 illusion of texture.

92

Bump Mapping

- This modifies the surface normals.

93

o))
<
Q.
a
O
=
a
£
S
an

Bump Mapping

Bump Mapping

» Consider the lighting for a modeled

surface.
TN

™~

96

3D Textures

Use a 3D

mapping
(%1 Ya1 Z,) = (r,s,t)

Usually stored procedurall

Examples of 3D texture x

sin(x + turbulence (x))
99

Animating Turbulence
Use an extra dimension as time

../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/clouds500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/clouds500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/flame500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/flame500.gif

Shadow

Course Note Credit: Some of slides are extracted from the course notes of prof. Mathieu Desburn
(USC) and prof. Han-Wei Shen (Ohio State University).

101

Shadows as Depth cue

\
Panel B PanelA [/ [/ / LN N
§ “ MIT EECS 6.837, Teller and Durand 102

Duality of shadow & view

* A point 1s lit if it
1s visible from
the light source

« Shadow
computation
very similar to
VIEW
computation

MIT EECS 6.837, Teller and Durand

103

Shadow Ray

Ray from visible point to light source

If blocked, discard light contribution

One shadow ray per light

Optimization?

— Stop after first intersection
(don’t worry about tmin)

— Test latest obstacle first

oo
" |

VILL CCVWD .02 07, LRLICT |dIll LrUurana

104

Shadow Maps

» Use texture mapping but using depth
* 2 passes (at least)

light light
Q. shadow ms 3
— Compute shadow Y { oo

I\
map from light sourc ~7\

* Store depth buffer
(shadow map)

— Compute final image

» Look up the
shadow map to
know 1f points
are i shadow

Figure from Folev et al. “Computer Graphics Princinles and Practice”

MIT EECS 6.837, Teller and Durand 105

What is Game Engine

* Game Engine vs. real engine of a car
- Non game specific technology

- Game vs. Car

- all the content (models, animations, sounds, AI,
and physics) which are called "assets'

- the code required specifically to make that
game work, like the AL, or how the controls
work

Game Engine

* Reusable software components within
different games

+ enable simplified, rapid development of
games in a data-driven manner

- sometimes called "game middleware or OS"

M

A@‘

\

http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Data-driven_design
http://en.wikipedia.org/wiki/Middleware

+ software system desighed for the creation and
development of video games. There are many
game engines that are designed to work on video
game consoles and desktop operating systems
such as Microsoft Windows, Linux, and Mac OS
X. The core functionality typically provided by a
game engine includes a rendering engine
("renderer”) for 2D or 3D graphics, a physics
engine or collision detection (and collision
response), sound, scripting, animation, artificial
intelligence, networking, streaming, memory
management, threading, and a scene graph. The
process of game development is frequently
E2bHomized by in large part reusing the same
game engine to create different games.

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/2D_computer_graphics
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Computer_animation
http://en.wikipedia.org/wiki/Game_AI
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Scene_graph
http://en.wikipedia.org/wiki/Game_development

* Modern game engines are some of the
most complex applications written,
frequently featuring dozens of finely
tuned systems interacting to ensure a
precisely controlled user experience. The
continued evolution of game engines has
created a strong separation between
rendering, scripting, artwork, and level
design. It is now common (as of 2003), for
example, for a typical game development
team to have several times as many artists

@al programmers

http://en.wikipedia.org/wiki/Level_design

Game Engine History

The term "game engine" arose in the mid-1990s, especially in
connection with 3D games such as first-person shooters (FPS).
(See also: first-person shooter engine). Such was the popularity of
id Software's Doom and Quake games that, rather than work from
scratch, other developers licensed the core portions of the
software and designed their own graphics, characters, weapons
and levels—the "game content" or "game assets." Separation of
game-specific rules and data from basic concepts like collision
detection and game entity meant that teams could grow and
specialize.

Later games, such as Quake IIT Arenaand Epic Games's 1998
Unreal/ were designed with this approach in mind, with the engine
and content developed separately. The practice of licensing such
technology has proved to be a useful auxiliary revenue stream for
some game developers, as a single license for a high-end
commercial game engine can range from US$10,000 to millions of
s, and the number of licensees can reach several dozen
banies (as seen with the Unreal Engine). At the very least,
reusable engines make developing game sequels faster and easier,
hich is a valuable advantage in the competitive video game

http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/First-person_shooter_engine
http://en.wikipedia.org/wiki/Id_Software
http://en.wikipedia.org/wiki/Doom_(video_game)
http://en.wikipedia.org/wiki/Quake
http://en.wikipedia.org/wiki/Video_game_developer
http://en.wikipedia.org/wiki/Level_(computer_and_video_games)
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Entities
http://en.wikipedia.org/wiki/Quake_III_Arena
http://en.wikipedia.org/wiki/Epic_Games
http://en.wikipedia.org/wiki/Unreal
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Unreal_Engine_technology
http://en.wikipedia.org/wiki/Video_game_industry

Graphics Engine

» The Renderer (Graphics Engine)

- RealmForge, Ogre, Power Render,
Crystal Space, Genesis3D, and JMonkey
Engine

- scene graph, which is an object-oriented
representation of the 3D game world

4@‘

http://en.wikipedia.org/wiki/RealmForge
http://en.wikipedia.org/wiki/OGRE_3D
http://en.wikipedia.org/wiki/Power_Render
http://en.wikipedia.org/wiki/Crystal_Space
http://en.wikipedia.org/wiki/Genesis3D
http://en.wikipedia.org/wiki/JMonkey_Engine
http://en.wikipedia.org/wiki/Scene_graph

Panda3D

* http://panda3d.org/

» a library of subroutines for 3D rendering
and game development.

* Game development with Panda3D usually
consists of writing a Python program that
controls the Panda3D library.

- emphasis is on supporting a short learning
curve and rapid development.

f‘@‘

\

http://panda3d.org/

To start Panda3D, create a text file and save it
with the .py extension. PYPE (available at
http://sourceforge.net/projects/pype/), SPE and
|IDLE are Python—specific text—editors, but any text

Eﬁltor 4“ ev}/:?rg.reagé S}Q fIPeII&\g Htext into your
i

To run your program, type this at the command prompt:
ppython filename.py

import direct.directbase.DirectStart

#|L oad the first environment model

environ = loader.loadModel("models/enviro
environ.reparentTo(render)
environ.setScale(0.25,0.25,0.25)
environ.setPos(-8,42,0)

#Run the teridiady

What is Unity?

e Unity is a multi-platform, integrated IDE for scripting
games, and working with 3D virtual worlds

e Including:
— Game engine
e 3D objects / lighting / physics / animation / scripting
— Accompanying script editor
e MonoDevelop (win/mac) << RECOMMENDED TO USE

e Unitron (Mac) / UniSciTE (Windows) << DEFAULT
e Can also use Visual Studio (Windows)

— 3D terrain editor
— 3D object animation manager
system

xecutable exporter many platforms:
native application / web player / iPhone / Android / Wii

114

o imiiz e on Pow | GlEmes | s

Umty main interface component%\

LN T [T
= Hierarchy = | Winspecior —
|
.:IE i | ol First Perzon Condraller Frefnb
F £ 3 | - -
[haylight Water Tap | Time # | Lepger | Dwlauli : kl
Directional Back light | Escon ieie Reconnecs Apphy ;
DHrectianal Sun |k % -, Traneform =
9 ’ | Pasitian
Alpaitd o | X 1043008 ¥ 51107 T KEZ.B2A
HeronPrefah | Racatiom
= HeronPrétab lx D ¥ 336453 7
¥ Leeell hjects | e alin |
;‘"‘Fﬂg"‘“ | X 169211 ¥ 169211 Z 169211
eaFloar
Terraln (7 [o FPEWalker choripty LGl &
Linderivater Vearer Surface Serlp | FPsyEalker |
- W Speed 5
Jumg Spead &
(A [20
¥ |1 Characier Cosiroller g -8
Haigh 2
Radius o4
Slapi LiFic 43
Step Offuei o4
... SkinWidth QL
B Project =| Mir Move stance o
Crasce = |k Center
¥ SaArplansuns 17) b Mowse Lok [Soript) L &
> CErds | Soript [Mouselook |
- aBridges Axan H-I'.lulllﬁ
w B kers Serisitivity X L5
= Latditor Serkithiny ¥ o
¥ 1 First Persoe Cancroler Prefab Minmae X -360
+ =Fizh Madimiuim X 50
5 Islareds P o
AfLighemappsn Mudmum ¥ (&

fillLighemapyyehrog
b Taloepboar WC_Uetied
- Hew Terraie
¥ Z3Pro Siandsrd Asses
= o Scripls
8| & SasesFoamCoast
Y & CaSounde
o T sranclard A ssety
¥ TaTerain Demo A5em
= aWaier

115

Unity — main interface
components

1 —Scene Scene = Hierarchy = same, just diff. views
— Editable (design-time) 3D game objects in the current scene
2 — Hierarchy

— Text list of game objects and sub-objects in the current scene

3 — Inspector
— Properties for currently selected Game Object

4 — Game
— Preview how game will look when exectuting
5 — Project

— Contents of Project ‘assets’ folder (i.e. files in that folder)
B\ . . N
brary of scripts, digital media files, and scenes

116

Scripting

e Unity implements a MONO compiler

e Scripts can be written in

— JavaScript

e Note — most introductory tutorials are written in
Javascript — for those learning programming its fine

— CH

e \Very similar to Java, Unity can be integrated with the
Microsoft Visual Studio editor, to get full benefits of cod
completion, source version control etc.

e Serious developers work in C# ...
Iso BOO (like Python) — little development is this ...

117

Scenes

e A unity “scene” is essentially a “level” or “screen”

e Typical game
— Welcome / main menu screen

e Buttons: play game / see high scores / read instructions / change
input settings

— Level 1 / Level complete / Level 2 etc...
— Game Over / Enter details for new High Score ...

e All the above would be separate “scenes” in unity

e Some scenes may be entirely based around the Unity
GUI scripts / components —i.e. be text / buttons on
screen

118

Project Assets

e The Assets folder for each Unity project
contains:

— Scenes

— Media assets
(images, sounds files, 3D models)

— Script files
— “packages”
(collections of unity assets, ready to import)

P\ B contents of the Unity “Project” panel
~@ eflect the contents of the “Assets” folder

119

Game Objects —in current
‘scene’

e Everthing in a scene is either a Game Object
— or a component INSIDE a Game Object

e Every Game Object has at least 1 COMPONENT

— |ts TRANSFORM — an object’s position, scale, rotation

— Other components depend on object type (audio,
mesh, material, script etc.)

e Game objects can be in a HIERARHCY —so an
bject can be a sub-object of another object

.£. an “arm” object can be a sub-object of a “body”
object etc.

120

Unity “Prefabs” powerful
concept ...

e Since object-oriented (although this is partially hidden when
scripting in JavaScript) instances can be INSTANTIATED at run
time

e Unity uses the term PREFAB for a pre-fabricated object
template (i.e. a class combining 3D objects and scripts)

e At DESIGN TIME (in editor) a prefab can be dragged from
Project window into the Scene window and added the scene’s
hierarchy of game objects

— The object can then be edited (i.e. customised from the prefab default
settings) if desired
e At RUN TIME a script can cause a new object instance to be
reated (instantiated) at a given location / with a given
rm set of properties

121

Unity 3D Terrain Editor

B Create terrain by selecting brush type, brush size and
opacity and then sculpting topology

B Set maximum height and smooth corners

B Textures loaded to paint texture onto terrain

B First texture acts as background to subsequent
B Paint on frees and other smaller items e.g grass.

Unity 3D Lights and
Cameras

W Lights
B Directional
W Point
B Spot
B Lights can be parented to other game objects
B Cameras
B One default camera
B First Person Controller includes camera
B Camera acts as an Audio Listener in the scene
B Remove default camera to only have one Audio Listener
B Cameras can be parented to other game objects

Unity 3D Textures

Materials form the basic starting point for textures

Textures should be in the following format to enable
tiling'.

» Square and the power of two

- 128 x 128, 256 x 256, 512 x 512, 1024 x 1024

Shaders control the rendering characteristics of
textured surface

Physics and Collision
Detection

B Physics component
B Mass
B Gravity
B Velelocity
W Friction
B Physics component added to game object.

B Collision detection provided for most objects - can be
customized with sphere colliders and mesh colliders

B Mesh colliders most computationally expensive
B Also level of detail LOD is handled by game engine

Scripting

* http://unity3d.com/learn/tutorials/t
opics/scripting

4@‘

126

Sky Boxes and Effects

B Skybox - cubemap - six textures placed inside a cube

B Rendered seamlessly to appear as surrounding sky and
horizon

B Not an object position a player can visit
B Only visible in the Game View panel

B Water effects created by an animated material applied
to a surface

Audio Effects

Audio requires an Audio Source and an Audio Listener in
the scene

Stereo sound treated as as ambient constant volume and
continuously playing in the scene (looped enabled)

Mono sound treated as spatial - gets louder or softer
depending on player’s position relative to the audio
source position

Supported formats .wav, .mp3, .aiff, .ogg

Unity 3D Terrain Editor

- 8 % Set Heightmap resolution

Please note that modifying the resolution will clear the heightmap, detail map or splatmap.
Terrain Width 1000
Terrain Height 600
Terrain Length | 1000]
Heightmap Resolution 513
Detail Resolution 1024
Zontrol Texture Resolution 512
Base Texture Resolution 1024

' € Inspector

W [Terrain

Tag | Untagged

$ | Layer | Default ;|

¥ o~ Transform

Position

X 0 ¥ 0O Z 0
Rotation

X 0 ¥ 0O Z 0
Scale

X1 ¥ |1 £l

b ? Terrain (Script)

ﬁ i,

Bl s 7w [T %]

Raize Height

Hald down shift to lower height.

Brushes

.o..ﬂ

oW kv W

1R L E Kk r*“:- s
ﬂ ,‘{-lgm‘- 1'4-
Settings
Brush Size i 25
Opacity i 0.5
v || Terrain Collider L+
Material Mone (Physic Material) r
Is Trigger L]
Terrain Data ‘F‘" Mew Terrain T

Create Tree Colliders

(A

#-Scene =
| Textured | ‘ :

