
Computer Graphics
Foundation to Understand

Game Engine
CS631/831

2

Quick Recap
• Computer Graphics is using a

computer to generate an image from
a representation.

Model Image
computer

3

Modeling
• What we have been studying so far is

the mathematics behind the creation
and manipulation of the 3D
representation of the object.

Model Image
computer

Modeling: The Scene
Graph

• The scene graph captures transformations
and object-object relationships in a DAG

• Objects in black; blue arrows indicate
instancing and each have a matrix

Robot

BodyHead

ArmTrunkLegEyeMouth

Modeling: The Scene
Graph

• Traverse the scene graph in depth-first
order, concatenating transformations

• Maintain a matrix stack of
transformations

ArmTrunkLegEyeMouth

Head Body

Robot

Foot

Matrix
Stack

Visited

Unvisited

Active

Motivation for Scene
Graph

• Three-fold
– Performance

– Generality

– Ease of use

• How to model a scene ?
– Java3D, Open Inventor, Open

Performer, VRML, etc.

Scene Graph Example

Scene Graph Example

Scene Graph Example

Scene Graph Example

Scene Description
• Set of Primitives

• Specify for each primitive
• Transformation

• Lighting attributes

• Surface attributes
• Material (BRDF)

• Texture

• Texture transformation

Scene Graphs
• Scene Elements

– Interior Nodes
• Have children that inherit state
• transform, lights, fog, color, …

– Leaf nodes
• Terminal
• geometry, text

– Attributes
• Additional sharable state (textures)

Scene Element Class
Hierarchy

• Simulation
– Animation

• Intersection
– Collision detection

– Picking

• Image Generation
– Culling

– Detail elision

– Attributes

Scene Graph Traversal

Functional Organization
• Articulated Transformations

– Animation

– Difficult to optimize animated objects

Bounding Volume
Hierarchies

View Frustum Culling

Level Of Detail (LOD)
• Each LOD nodes

have distance
ranges

19

What is a
Transformation?

• Maps points (x, y) in one coordinate
system to points (x', y') in another
coordinate system

x' = ax + by + c

y' = dx + ey + f

20

Transformations
• Simple transformation

– Translation

– Rotation

– Scaling

21

Transformations
• Why use transformations?

– Position objects in a scene (modeling)

– Change the shape of objects

– Create multiple copies of objects

– Projection for virtual cameras

– Animations

22

How are Transforms
Represented?

x' = ax + by + c

y' = dx + ey + f

x'

y'

a b

d e

c

f
=

x

y
+

p' = M p + t

23

Combining Translation &
Rotation

)1,1(T

)45(R

)45(R

)1,1(T

24

Combining Translation &
Rotation

T vv'

RTR

TR

R







vv

vv

vv

''

)(''

'''

vv R'

TR

T





vv

vv

''

'''

25

Homogeneous Coordinates

• Add an extra dimension
• in 2D, we use 3 x 3 matrices

• In 3D, we use 4 x 4 matrices

• Each point has an extra value, w

x'

y'

z'

w'

=

x

y

z

w

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

p' = M p

26

Homogeneous Coordinates

• Most of the time w = 1, and we can
ignore it

x'

y'

z'

1

=

x

y

z

1

a

e

i

0

b

f

j

0

c

g

k

0

d

h

l

1

27

Combining
Transformations

vv

vvvv

vvv

vv

M

TRSTRT

RSR

S









'''

''''''

'''

'

where TRSM 

28

Deformations

Transformations that do not preserve
shape
 Non-uniform scaling

 Shearing

 Tapering

 Twisting

 Bending

29

Tapering

























































11000

0)(00

00)(0

0001

1

'

'

'

z

y

x

xf

xf

z

y

x

30

Twisting


























































11000

0))(cos(0))(sin(

0010

0))(sin(0))(cos(

1

'

'

'

z

y

x

yy

yy

z

y

x





31

Bending

























































11000

0)()(0

0)()(0

0001

1

'

'

'

z

y

x

ykyh

ygyf

z

y

x

32

Graphics Pipeline

33

Graphics Pipeline
• Almost every step in the graphics

pipeline involves a change of
coordinate system. Transformations
are central to understanding 3D
computer graphics.

34

Graphics Pipeline
• Modeling transforms orient

the models within a

common coordinate frame

(world space)

35

Graphics Pipeline

36

Graphics Pipeline
• Maps world space to eye space

• Viewing position is transformed

to origin & direction is oriented

along some axis (usually z)

37

Graphics Pipeline
• Transform to Normalized Device

Coordinates (NDC)

• Portions of the object outside the

view volume (view frustum) are

removed

38

Graphics
Pipeline

• The objects are
projected to the
2D image place
(screen space)

39

Graphics Pipeline

40

Graphics
Pipeline

• Z-buffer - Each
pixel remembers
the closest object
(depth buffer)

41

Coordinate Systems
 Object coordinates

 World coordinates

 Camera coordinates

 Normalized device coordinates

 Window coordinates

42

Object Coordinates
Convenient place to model the object

O

43

World Coordinates
Common coordinates

for the scene

O

O

W

TSRMwo 

44

Positioning Synthetic Camera

What are our “degrees of freedom” in camera
positioning?
To achieve effective visual simulation, we want:
1) the eye point to be in proximity of modeled scene
2) the view to be directed toward region of interest,
and
3) the image plane to have a reasonable “twist”

45

Eye Coordinates

Eyepoint at origin
u axis toward “right” of image plane
v axis toward “top” of image plane
view direction along negative n axis

46

Transformation to Eye
Coordinates

Our task: construct the transformation M
that re-expresses world coordinates in the
viewer frame

47

Where are we?

48

What is Projection?

Any operation that reduces dimension (e.g., 3D to 2D)

Orthographic Projection
Perspective Projection

49

Orthographic Projection

• focal point at infinity

• rays are parallel and orthogonal to the image plane

Image

World

F

F

Image

World

I

W

50

Comparison

51

Perspective Projection

z = 0 not allowed (what happens to points on plane z = 0?)
Operation well-defined for all other points

52

Similar Triangles
Y

Z

[0, d][0, 0]

[Y, Z]

[(d/Z)Y, d]

• Similar situation with x-coordinate

• Similar Triangles:
point [x,y,z] projects to [(d/z)x, (d/z)y, d]

53

Projection Matrix

Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]

• 2-D image point:
• discard third coordinate

• apply viewport transformation to obtain
physical pixel coordinates

d 0 0 0

0 d 0 0

0 0 d 0

0 0 1 0





















x

y

z

1





















 dx dy dz z[]
d

z
x
d

z
y d











Divide by 4th coordinate

(the “w” coordinate)

54

Shading
[Drawing] Shading is a process used in drawing for

depicting levels of darkness on paper by applying media

more densely or with a darker shade for darker areas, and

less densely or with a lighter shade for lighter areas.

[Computer graphics] Shading refers to the process of

altering a color based on its angle to lights and its distance

from lights to create a photorealistic effect. Shading is

performed during the rendering process.

http://en.wikipedia.org/wiki/Photorealistic
http://en.wikipedia.org/wiki/Rendering

55

Shading
Light comes from many sources:

absorbedscattered

dtransmitte

reflectedemittedlight







scattering

absorption

reflection

transmission
emission

56

Local versus Global
Illumination

 Global
Illumination
 Considers

indirect
illumination

 Reflection

 Refraction

 Shadows

 Local Illumination

 Only considers direct

illumination

 No reflection

 No refraction

 Shadows possible

57

Local versus Global
Illumination

2P
1P

Indirect Illumination

Direct Illumination

We will do local only for this lecture…

58

Local illumination
• Only consider the light, the observer position,

and the object material properties

59

Local versus Global
Illumination

Images courtesy of Francois Sillion

To understand shading properly, we need to

review some basic notions of physics…

60

Phong Reflection

speculardiffuseambient IIII 

Assume point lights and direct illumination only

61

Phong Diffuse Component

)(

cos

LNkI

kII

dl

dldiffuse



 

Diffuse component depends only on incident angle.

Image courtesy of Watt, 3D Computer Graphics

N.B: L and N are unit…

62

Specular Light

 These are the bright spots on objects (such as
polished metal, apple ...)

 Light reflected from the surface unequally to all
directions.

 The result of near total reflection of the incident
light in a concentrated region around the specular
reflection angle

63

Phong Reflection

Image courtesy of Watt, 3D Computer Graphics

64

Aluminium

65

Bronze

66

Chrome

67

Vertex Normals vs. Face
Normals

What are the normals to the surface?

Each polygonal face has a normal.

We call these face normals.

a

c

b

N = (b - a) x (c - b)

68

Flat Shading
Assume a constant color across the polygon

Uses face normals

Equivalent to single point sampling…

a

c

b

Polygon mesh is only an approximation.

Can we do better?

69

Vertex Normals vs. Face
Normals

Should use the actual surface’s normals

Usually stored at the vertices of the object

Can calculate as averages of face normals

70

Mach Band ?

71

Mach Band ?

72

Un-lit

73

Flat Shading

74

Gouraud Interpolation – Interpolated Shading

75

Phong Interpolation – Per pixel Shading

76

77

Interpolation

Image courtesy of Watt & Watt, Advanced Animation and Rendering Techniques

78

79Slide Courtesy of Leonard McMillan & Jovan Popovic, MIT

80

Case Studies:
Low Poly Modeling

• With low polygon modeling, much of
the detail is painted into the texture

Images courtesy of WildTangent, model and texture by David
Johnson.

81

Texture Mapping
Coordinates

• Understanding U’s and V’s

• Managing the texture space

• Laying out and positioning of UV points

82

Breaking Down
Mesh Object for Mapping

• Evaluate the 3D model for common areas

• Avoid duplication
– Simplifies the work
– Saving valuable texture space
– Reduce the amount of texture borders

83

Applications beyond Texture Map
Normal map: 3D Sculpting

• A low resolution model can be sculpted into
a very detailed mesh.

• This can be used in game via normal maps

Images courtesy of
Pixolgic.

84

Applications beyond Texture Map

Environment Maps

Use texture to represent reflected
color

• Texture indexed by reflection vector

• Approximation works when objects are far
away from the reflective object

85

Environment Maps
Using a spherical environment map

Spatially variant resolution

86

Environment Maps
Using a cubical environment map

87

Environment Mapping
• Environment mapping

produces reflections on
shiny objects

• Texture is transferred in
the direction of the
reflected ray from the
environment map onto the
object

• Reflected ray: R=2(N·V)N-
V

• What is in the map?
Object

Viewer
Reflected ray

Environment Map

88

Approximations Made
• The map should contain a view of the world

with the point of interest on the object as
the eye
– We can’t store a separate map for each point, so

one map is used with the eye at the center of the
object

– Introduces distortions in the reflection, but the
eye doesn’t notice

– Distortions are minimized for a small object in a
large room

• The object will not reflect itself
• The mapping can be computed at each pixel,

or only at the vertices

89

Example

90

Illumination Maps
Use texture to represent

illumination footprint

91

Bump Mapping
Use texture to perturb normals

- creates a bump-like effect

+ =

original surface bump map modified surface

),(vuO),(vuB),(' vuO

Does not change silhouette edges

92

Bump Mapping
• Many textures are the result of small

perturbations in the surface
geometry

• Modeling these changes would result
in an explosion in the number of
geometric primitives.

• Bump mapping attempts to alter the
lighting across a polygon to provide
the illusion of texture.

93

Bump Mapping
• This modifies the surface normals.

94

Bump Mapping

95

Bump Mapping

96

Bump Mapping
• Consider the lighting for a modeled

surface.

97

3D Textures
Use a 3D

mapping
   tsrzyx ooo ,,,, 

Usually stored procedurally

Can simulate an object carved from a material

98

Examples of 3D texture

99

Turbulence

)(xturbulence))(sin(xturbulencex

100

Animating Turbulence
Use an extra dimension as time

../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/clouds500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/clouds500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/flame500.gif
../2004 Spring/Mattiuslides/Pics/Texture/3d Texture/flame500.gif

101

Course Note Credit: Some of slides are extracted from the course notes of prof. Mathieu Desburn

(USC) and prof. Han-Wei Shen (Ohio State University).

Shadow

102

Shadows as Depth cue

103

Duality of shadow & view

104

Shadow Ray

105

Shadow Maps

What is Game Engine
• Game Engine vs. real engine of a car

– Non game specific technology

• Game vs. Car
– all the content (models, animations, sounds, AI,

and physics) which are called 'assets‘

– the code required specifically to make that
game work, like the AI, or how the controls
work

Game Engine
• Reusable software components within

different games

• enable simplified, rapid development of
games in a data-driven manner

• sometimes called "game middleware or OS”

http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Data-driven_design
http://en.wikipedia.org/wiki/Middleware

• software system designed for the creation and
development of video games. There are many
game engines that are designed to work on video
game consoles and desktop operating systems
such as Microsoft Windows, Linux, and Mac OS
X. The core functionality typically provided by a
game engine includes a rendering engine
(“renderer”) for 2D or 3D graphics, a physics
engine or collision detection (and collision
response), sound, scripting, animation, artificial
intelligence, networking, streaming, memory
management, threading, and a scene graph. The
process of game development is frequently
economized by in large part reusing the same
game engine to create different games.

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/2D_computer_graphics
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Computer_animation
http://en.wikipedia.org/wiki/Game_AI
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Scene_graph
http://en.wikipedia.org/wiki/Game_development

• Modern game engines are some of the
most complex applications written,
frequently featuring dozens of finely
tuned systems interacting to ensure a
precisely controlled user experience. The
continued evolution of game engines has
created a strong separation between
rendering, scripting, artwork, and level
design. It is now common (as of 2003), for
example, for a typical game development
team to have several times as many artists
as actual programmers

http://en.wikipedia.org/wiki/Level_design

Game Engine History
• The term "game engine" arose in the mid-1990s, especially in

connection with 3D games such as first-person shooters (FPS).
(See also: first-person shooter engine). Such was the popularity of
id Software's Doom and Quake games that, rather than work from
scratch, other developers licensed the core portions of the
software and designed their own graphics, characters, weapons
and levels—the "game content" or "game assets." Separation of
game-specific rules and data from basic concepts like collision
detection and game entity meant that teams could grow and
specialize.

• Later games, such as Quake III Arena and Epic Games's 1998
Unreal were designed with this approach in mind, with the engine
and content developed separately. The practice of licensing such
technology has proved to be a useful auxiliary revenue stream for
some game developers, as a single license for a high-end
commercial game engine can range from US$10,000 to millions of
dollars, and the number of licensees can reach several dozen
companies (as seen with the Unreal Engine). At the very least,
reusable engines make developing game sequels faster and easier,
which is a valuable advantage in the competitive video game
industry.

http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/First-person_shooter_engine
http://en.wikipedia.org/wiki/Id_Software
http://en.wikipedia.org/wiki/Doom_(video_game)
http://en.wikipedia.org/wiki/Quake
http://en.wikipedia.org/wiki/Video_game_developer
http://en.wikipedia.org/wiki/Level_(computer_and_video_games)
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Entities
http://en.wikipedia.org/wiki/Quake_III_Arena
http://en.wikipedia.org/wiki/Epic_Games
http://en.wikipedia.org/wiki/Unreal
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Unreal_Engine_technology
http://en.wikipedia.org/wiki/Video_game_industry

Graphics Engine

• The Renderer (Graphics Engine)
– RealmForge, Ogre, Power Render,

Crystal Space, Genesis3D, and JMonkey
Engine

– scene graph, which is an object-oriented
representation of the 3D game world

http://en.wikipedia.org/wiki/RealmForge
http://en.wikipedia.org/wiki/OGRE_3D
http://en.wikipedia.org/wiki/Power_Render
http://en.wikipedia.org/wiki/Crystal_Space
http://en.wikipedia.org/wiki/Genesis3D
http://en.wikipedia.org/wiki/JMonkey_Engine
http://en.wikipedia.org/wiki/Scene_graph

Panda3D
• http://panda3d.org/
• a library of subroutines for 3D rendering

and game development.
• Game development with Panda3D usually

consists of writing a Python program that
controls the Panda3D library.

• emphasis is on supporting a short learning
curve and rapid development.

http://panda3d.org/

To start Panda3D, create a text file and save it
with the .py extension. PYPE (available at
http://sourceforge.net/projects/pype/), SPE and
IDLE are Python-specific text-editors, but any text
editor will work. Enter the following text into your
Python file:
import direct.directbase.DirectStart
run()

To run your program, type this at the command prompt:
ppython filename.py

import direct.directbase.DirectStart

#Load the first environment model
environ = loader.loadModel("models/environment")
environ.reparentTo(render)
environ.setScale(0.25,0.25,0.25)
environ.setPos(-8,42,0)
#Run the tutorial
run()

Test1.py

What is Unity?
• Unity is a multi-platform, integrated IDE for scripting

games, and working with 3D virtual worlds
• Including:

– Game engine
• 3D objects / lighting / physics / animation / scripting

– Accompanying script editor
• MonoDevelop (win/mac) << RECOMMENDED TO USE
• Unitron (Mac) / UniSciTE (Windows) << DEFAULT
• Can also use Visual Studio (Windows)

– 3D terrain editor
– 3D object animation manager
– GUI system
– Executable exporter many platforms:

native application / web player / iPhone / Android / Wii

114

Unity – main interface components

115

Unity – main interface
components

1 – Scene Scene = Hierarchy = same, just diff. views
– Editable (design-time) 3D game objects in the current scene

2 – Hierarchy
– Text list of game objects and sub-objects in the current scene

3 – Inspector
– Properties for currently selected Game Object

4 – Game
– Preview how game will look when exectuting

5 – Project
– Contents of Project ‘assets’ folder (i.e. files in that folder)

– library of scripts, digital media files, and scenes

116

Scripting

• Unity implements a MONO compiler

• Scripts can be written in
– JavaScript

• Note – most introductory tutorials are written in
Javascript – for those learning programming its fine

– C#
• Very similar to Java, Unity can be integrated with the

Microsoft Visual Studio editor, to get full benefits of code
completion, source version control etc.

• Serious developers work in C# …

– Also BOO (like Python) – little development is this …

117

Scenes
• A unity “scene” is essentially a “level” or “screen”

• Typical game
– Welcome / main menu screen

• Buttons: play game / see high scores / read instructions / change
input settings

– Level 1 / Level complete / Level 2 etc…
– Game Over / Enter details for new High Score …

• All the above would be separate “scenes” in unity
• Some scenes may be entirely based around the Unity

GUI scripts / components – i.e. be text / buttons on
screen

118

Project Assets
• The Assets folder for each Unity project

contains:
– Scenes

– Media assets
(images, sounds files, 3D models)

– Script files

– “packages”
(collections of unity assets, ready to import)

• The contents of the Unity “Project” panel
reflect the contents of the “Assets” folder

119

Game Objects – in current
‘scene’

• Everthing in a scene is either a Game Object
– or a component INSIDE a Game Object

• Every Game Object has at least 1 COMPONENT
– Its TRANSFORM – an object’s position, scale, rotation

– Other components depend on object type (audio,
mesh, material, script etc.)

• Game objects can be in a HIERARHCY – so an
object can be a sub-object of another object
– E.g. an “arm” object can be a sub-object of a “body”

object etc.
120

Unity “Prefabs” powerful
concept …

• Since object-oriented (although this is partially hidden when
scripting in JavaScript) instances can be INSTANTIATED at run
time

• Unity uses the term PREFAB for a pre-fabricated object
template (i.e. a class combining 3D objects and scripts)

• At DESIGN TIME (in editor) a prefab can be dragged from
Project window into the Scene window and added the scene’s
hierarchy of game objects
– The object can then be edited (i.e. customised from the prefab default

settings) if desired

• At RUN TIME a script can cause a new object instance to be
created (instantiated) at a given location / with a given
transform set of properties

121

Unity 3D Terrain Editor
 Create terrain by selecting brush type, brush size and

opacity and then sculpting topology

 Set maximum height and smooth corners

 Textures loaded to paint texture onto terrain

 First texture acts as background to subsequent

 Paint on trees and other smaller items e.g grass.

Unity 3D Lights and
Cameras

 Lights
 Directional
 Point
 Spot
 Lights can be parented to other game objects

 Cameras
 One default camera
 First Person Controller includes camera
 Camera acts as an Audio Listener in the scene
 Remove default camera to only have one Audio Listener
 Cameras can be parented to other game objects

Unity 3D Textures
– Materials form the basic starting point for textures

– Textures should be in the following format to enable
‘tiling’.

• Square and the power of two

• 128 x 128, 256 x 256, 512 x 512, 1024 x 1024

– Shaders control the rendering characteristics of
textured surface

Physics and Collision
Detection

 Physics component
 Mass

 Gravity

 Velelocity

 Friction

 Physics component added to game object.

 Collision detection provided for most objects - can be
customized with sphere colliders and mesh colliders

 Mesh colliders most computationally expensive

 Also level of detail LOD is handled by game engine

Scripting
• http://unity3d.com/learn/tutorials/t

opics/scripting

126

Sky Boxes and Effects
 Skybox - cubemap - six textures placed inside a cube

 Rendered seamlessly to appear as surrounding sky and
horizon

 Not an object position a player can visit

 Only visible in the Game View panel

 Water effects created by an animated material applied
to a surface

Audio Effects
– Audio requires an Audio Source and an Audio Listener in

the scene

– Stereo sound treated as as ambient constant volume and
continuously playing in the scene (looped enabled)

– Mono sound treated as spatial - gets louder or softer
depending on player’s position relative to the audio
source position

– Supported formats .wav, .mp3, .aiff, .ogg

Unity 3D Terrain Editor

